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Abstract. The idea of ubiquitous computing and smart environments
is no longer a dream and has long become a serious area of research and
soon this technology will start entering our every day lives. There are
two major obstacles that prevent this technology from spreading. First,
different smart spaces are equipped with very different kinds of devices
(e.g. a projector vs. a computer monitor, vs. a TV set). Second, multiple
applications running in a space at the same time inevitably contend for
those devices and other scarce resources. The underlying software in a
smart space needs to provide tools for self-adaptivity in that it shields the
rest of the software from the physical constraints of the space, and that
it dynamically adjusts the allocation of scarce resources as the number
and priorities of active tasks change.

We argue that a resource manager can provide the necessary functional-
ity. This paper presents a set of guiding principles for building high-level
resource management tools for smart spaces. We present conclusions we
arrived at after two years of exploring the topic in the Intelligent Room
Project at the MIT AI Lab. The paper is based on a number of imple-
mented and tested tools.

1 Introduction

For several years, our research group in the MIT AI Lab has been developing an
“Intelligent Room” [8,9, 5], a space that interacts with its users through sensory
technologies such as machine vision, speech recognition and natural language
understanding. Our room also is equipped with a rich array of multi-media tech-
nologies. These technologies are intended to provide a natural, human-centered
interface to its users.

The Intelligent Room is designed to be a utility that must always be available
and it must provide reasonable services to its users even though their needs are
not easily predicted. It must continue to provide these services even if there are
equipment failures or if there is contention for the use of resources among the
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users or applications. It is also desirable that it be able to provide improved and
additional services if higher quality equipment is added.

Finally, and most crucially to be truly human-centered it must be able to
do all these things seemlessly while running, without intervention by program-
mers and systems wizards. In other words, the Intelligent Room must be a self-
adaptive system in the spirit of [17, 16]. It must monitor the environment as well
as its own state, have a variety of techniques for accomplishing its goals, and
make intelligent choices about which technique to use in the current context.

This paper describes our experience with building such a system. The key
insights are:

1. People should interact with the Intelligent Room not in terms of resources,
but rather in terms of abstract services (e.g. “show me this information”
rather than “print this on that printer”)

2. The Intelligent Room should be capable of mapping a service request to a
variety of solutions (“project the information,” “display it on a PDA,” “print
it on a printer”)

3. The Intelligent Room should choose a solution based both on how well the
solution meets the users’ needs and how well it minimizes the use of costly
or rare resources and

4. Tt should make this decision at runtime so that it can respond to a changing
set of requests and a changing environment.

1.1 What Is a Resource Manager For a Smart Space

What we mean by a resource manager is a system capable of performing two
fundamental tasks: resource mapping and arbitration .

By resource mapping (a.k.a. match-making) we mean the process of finding
out what actual resources can be taken into consideration given a specific request.

By arbitration we mean a process of making sure that, at a minimum, re-
sources are not being used beyond their capacities. At best, arbitration ensures—
via appropriate allocation of resources to requests—optimal, or nearly optimal,
use of scarce resources.

This paper is concerned with management of higher-level resources. While OS
level management (memory, CPU time, etc.) is of course important, and load-
balancing of computationally intensive agents over multiple machines is also, we
limit our focus to higher-level resources such as physical devices and large soft-
ware components (see [28] and [22] for an example of a system that deals with
resources in a smart spaces at the OS level). Our concerns lie with, for example,
projectors, multiplexors, wires, displays, modems, user attention, software pro-
grams, screen real estate, sound input and output devices, CD players, drapes,
and lamps.

1.2 Some Definitions

For clarity, we define here some potentially ambiguous terms.



Metaglue Metaglue [10, 21, 26] is the multi-agent system forming the software
base for all work at the Intelligent Room Project. Metaglue manages agent-
to-agent communication via Java’s RMI system. Agents can start and obtain
references to other agents via a reliesOn method. All agents have unique
IDs; part of an ID is the “occupation” which is the top-level interface the
agent implements. Agents are also collected in societies so multiple users and
spaces can have distinct name-spaces. Metaglue makes it easy to coordinate
the startup and running of agents on any number of machines with differing
operating systems.

Agent Agents are distinct object instances capable of providing services and
making requests of the resource manager. This means agents themselves are
considered to be a type of resource (see below) because they provide services.

Device A physical or logical device is something akin to a projector, screen, or
user-attention; devices are often, but not necessarily represented by agents.
Devices provide services and so are resources.

Service Services are provided by agents and devices; a single agent or device
can provide more than one service and any kind of service can be provided
by a number of agents or devices. This is explained in more detail in Section
4.1.

Resource A resource is a provider of a service. Both agents and physical devices
are resources. For example, a physical LED sign is a resource (providing
the LED sign hardware service) obtained and used by the LEDSignText
Agent which is in turn a resource (providing TextOuput service and LEDSign
service) that can be obtained and used by any other agent needing such a
service.

2 Our Work to Date

This paper is based on our work on the Intelligent Room Project [8,9, 5] at the
MIT AI Lab, including otherwise unpublished research on resource management.
Below we summarize our results relevant to this paper in order to give the reader
a better idea of how we arrived at our observations.

Over the past two years we have developed several resource management tools
for the Intelligent Room. The tools differed in approach and level of sophisti-
cation. At the two extremes we have Namer and Rascal [15]. Namer only does
context-based name resolution (i.e. some service mapping but no arbitration).
Rascal, on the other hand, is a very complex system that uses a rule-based lan-
guage (JESS, [13]) for representing knowledge about agents’ services and needs,
as well as for service mapping, and uses a constraint satisfaction engine (JSolver,
[7]) for arbitration. All of our resource managers implement a common interface
which allows us to interchange them without changing any of the other code in
the system. The reason for having several different resource management schemes
was motivated by more than just the need to find the right solution: it is our
assumption that different resource mangers will be used in people’s various mo-
bile personal spaces (with one or two devices and where computation is scarce)
and large and well-equipped static spaces.



As mentioned before, Rascal is our most complex resource manager, con-
forming to most of the design principles laid out in this paper. Currently Rascal
does not deal with issues of privacy and access control and we have only just
began work on cooperation mechanisms.

Rascal relies on agents having external descriptions of themselves. Such de-
scriptions include a list of startup needs, a list of provided services (each with a
list of its own needs) and descriptions of all possible requests for resources the
agent may make in its life-cycle.

Knowing startup needs and needs for providing particular services allows
Rascal to ensure that before it assigns a particular agent to provide a service
in response to a request, all of the needs of that new agent (and its underlings)
can be satisfied. For example, if some agent requests a TextOutput device and
the possible candidates are SpeechTextOutput and GuiTextOutput, Rascal will
ensure that either speech generation is available for SpeechTextOutput or a com-
puter screen is available for GuiTextOutput, before assigning either candidate
to the requester. Additionally, knowing agent’s startup needs also allows us to
dynamically choose what particular machine an agent should be started on.

So far our software has been installed in six spaces of four different kinds:
three small offices, one small living room, one large office (also used for small
meetings), and a twelve-seat conference room. The instrumentation of these
spaces varies widely; we have a single dilapidated projector and a couple of
lights in one of the small offices on one hand, and six projectors and a large
number of A/V devices in the conference room on the other. Our living room
has two projectors, a TV, several cameras, and A/V equipment.

3 On-Demand Agent Startup - Reasoning About Absent
Agents

An agent system in a smart space should have a way of autonomously starting
agents on-demand and consequently the resource manager should be able to
reason about agents that are not alive right now but could be brought to life if
needed.

Because on-demand agent startup is one of the basic features of Metaglue, we
have taken it for granted but many other agent systems do not support it. Hence
we will now briefly argue why on-demand agent startup is a desirable feature of
an agent system in charge of a smart space and then discuss the consequences
for resource management.

3.1 Why Support On-Demand Agent Startup in Smart Spaces

Most agent systems deal with very dynamic, spontaneously created and often
unstable collections of agents. Therefore, creators of such systems have to refrain
from making assumptions about what is available in the system at any given
time and usually have to resort to dynamic discovery, direct negotiation or other
such techniques when an agent looks for a service or resource (e.g. [18,23,12]).



This general attitude has been assumed by creators of agent systems controlling
smart spaces. Standard Jini [2] implementation and Hive [20] are good examples
of such systems.

Smart spaces, by the virtue of being based on stable physical environments,
impose a special set of constraints on the underlying software infrastructure. It
is true that a lot of adaptivity is still needed — new components can appear and
disappear, people come and go, devices are brought in and removed-but at the
same time we benefit from assuming certain level of persistence.

It is a feature of a physical space that most of its components are static
in the sense that they are usually there. If one day a space contains lights,
A/V equipment, projectors, and telephones, it is reasonable to expect that those
devices would be present the next day as well. They will be there whether we
are using them or not. This level of predictability can (and should) be reflected
by the underlying software infrastructure. This is not to say, of course, that the
software should not be capable of dynamically accepting new components.

On-demand agent startup is highly useful in any flexible space in a variety of
ways. For example, it allows us to make multiple instances of an agent when we
want to perform several versions of the same task. Furthermore, it allows us to
have very complex interrelationships between agents and very large numbers of
agents. Without on-demand startup one needs to craft elaborate startup scripts
or hand-start all the agents in the system; both of these are infeasible when
talking about collections of forty agents or more, especially when considering
that the particular agents change depending on who is starting the system, the
various tasks the system is to accomplish, and the room the system is being
started in.

With on-demand startup, starting a single high level agent is sufficient to
obtain a service provided by that agent. This agent will then request and, cause
to be started, all other agents it needs in order to do its job well.

Even with the convenience argument set aside, the following example illus-
trates some additional benefits of being able to start agents dynamically.

FEzxzample 1. Let us assume that the phone service is provided by the phone agent.
The agent needs a computer with a voice modem hooked up to a phone line in
order to provide its services. Imagine a system consisting of several machines
with voice modems hooked up to a single phone line (e.g. in a shared graduate
student office). If we did not allow for on-demand agent startup, we would have
to do one of the following:

1. Start the phone agent on a prespecified machine, running a risk that if that
machine goes down the service is no longer available.

2. Start an instance of the phone agent on every machine with a voice modem
and a connection — a rather misleading solution because each of the agents
would be advertising phone service but only one of them would be able to
provide it at a time because all of the machines share a single phone line.



Another immediate use for automatic agent startup has to do with robustness
and recovery: if an agent providing a computational service goes down because
of computer failure, it can be automatically restarted at a new location.

‘We understand that this point has much potential for debate, and so we will
not dwell it as other aspects for and against it lie outside the realm of resource
management.

3.2 Impact on Resource Management

If we assume that on-demand agent startup is supported by the underlying
software architecture, then it stands to reason that the resource manager for
such a system has to be able to reason about absent agents.

To the best of our knowledge, it is uncommon in agent architectures, even
those in charge of smart spaces, to have non-alive agents be taken into account
during any coordination efforts. It is our belief that taking potentially available
agents into account allows a resource management system to make intelligent
decisions about resource allocation as in Example 1 in the previous section. (See
also Example 2 in Section 4.3.)

An important consequence of embracing on-demand agent startup is that we
cannot rely on agents themselves to provide descriptions of their needs and ser-
vices as they might not be running. The resource manager has to have access to
such descriptions without having to instantiate any of the agents. Rascal requires
agent programmers to create separate description files but other solutions could
easily be created (e.g. descriptions could be cached by the resource manager).

Implicit in Example 1 in the previous section is the assumption that the
system, and in particular the resource manager, has a way of starting agents
on a specific computer or virtual machine. Metaglue provides such capability as
one of its two main primitives. It is unclear to us at the moment to what extent
other systems support it.

4 Representation

In this section we concentrate on what knowledge should be contained in the
resource manager but not on how that knowledge should be encoded. In par-
ticular we argue that when building a resource manager for a smart space, the
following key points should be observed:

— Represent resources in terms of the services they provide (e.g. text output)
as well as their type (e.g. scrolling LED sign).

— Ensure that representations are rich enough to allow the requesters to get
the best tools for the job. In particular we caution those using Java against
using only interface names for describing resources.

— Ensure that the representation is capable of describing resources that are
not represented within the agent systems by agents or other special proxy
objects. Examples of such resources would be hardware that is not directly



controlled by the agent system but yet is crucial for system’s performance
(e.g. wires, low level computer components such as modems, third party
software modules, etc.)

4.1 Services Not Devices

To be truly useful, smart spaces have to be affordable, which implies that it
should be possible to build them out of mass produced, interconnected compo-
nents. This includes both the hardware and the software. Hence we can imagine
that in the future we will be getting packaged software for our rooms and of-
fices just as today we get it for our desktop computers. Creating such programs,
however, may prove very difficult.

It is already difficult to keep desktop computers similar enough to make it
possible for the same software to run on all of them. It will certainly be even
more difficult when it comes to smart spaces. People take great pride in how they
arrange their work and living environments and so creators of software for smart
spaces cannot impose how those spaces should be arranged or equipped. While
software creators for desktop computers can require that a computer should be
equipped with a display, a CD-ROM and a sound card, they certainly cannot
require the same level of uniformity among smart spaces. Thus we have to make
it possible for applications to run in a variety of spaces with diverse devices and
configurations.

The differences among desktop computers have been minimized by the use
of software drivers for various devices installed in those computers. Hence, it
does not matter what kind of a video card or a monitor one has - the drivers are
going to make all cards and monitors “speak the same language” and provide
the same services to all applications.

In intelligent spaces the situation will be even more difficult: not only will
spaces have different kinds of displays, ranging from little TVs to large plasma
displays, but some spaces may not have displays at all. Thus we have to express
the abilities of various devices in smart environments in more abstract terms. As
well as providing uniform interfaces to devices, as is done on desktop computers,
we propose providing uniform interfaces to the services provided by those devices.
This distinction is more profound than it may at first appear. It comes from the
fact that each service can, in principle, be provided by a number of conceptually
different devices and each device can provide a number of distinct services. For
example, on one hand, the “short-text-output” service may be rendered by a
computer display device, a speech output device or by a one line scrolling-LED
display. On the other hand, the LED sign, as well as providing short text display,
can provide simple graphics and animation.

We are not unique in suggesting that devices represented by device drivers
are insufficient for a smart space; a somewhat different approach was suggested
by Winograd [27]. Schubiger-Banz et al. [25] argue for “addressing by concept” in
all ubiquitous computing environments (both spaces and/or collections of mobile
devices). INS [1] uses “intentional names” for all networked resources. EasyLiving
[6] also seems to represent resources in terms of services they provide.



4.2 Rich Representation - Rich Requests

We now examine how the services should be represented by the resource manager.
The details are, of course, dependent on the particular implementation.

Open Agent Architecture OAA [19], which relies on a facilitator agent for
all inter-agent communication and task brokerage, uses a PROLOG-based ICL
(Interagent Communication Language) for describing agents’ needs and capabil-
ities. The language allows service providers to describe the agents in terms of
tasks they can perform and not really in terms of resources they represent.

Decker [11] uses KQML for communicating needs and abilities of agents.

A common tendency among Java-based systems (e.g. Jini [2], Hive [20], Ras-
cal [15,14]), is to use the name of the interface (or interfaces) that the resource
implements, and a list of attribute-value pairs for describing agents’ capabilities.

In this last case, an agent’s interface provides information on how the agent’s
capabilities should be invoked. It also often provides most of the information
on what the agent does. One of the advantages of using interface names for
describing agents is that interface “ontologies”, i.e. APIs, are easily understood
by programmers and some of them get adopted by large communities. But it has
to be stressed again, that the interfaces should provide access to agent’s services.
Thus an agent can advertise a number of interfaces, one for each services it
provides.

We agree with designers of Hive and Jini in that the types of interfaces
implemented by an agent provide a lot of valuable information about agent’s
capabilities and expected behavior. We also agree with them in that the interface
names are not sufficient for describing any agent fully.

Just having interfaces and nothing else be an agent’s description is not
enough. Often a number of parameters, some of them continuous, contribute
to a service’s full description. Display services need to be described in terms
of resolution, size, color depth, brightness, etc. Having detailed descriptions of
services allows for more precise requests: an agent that needs to show a map
with a lot of detail, will request a high-resolution color display, not just a dis-
play. At the same time, a mail alert agent could deal with a very low resolution
display as long as it is visible and so would ask for the display without additional
parameters.

4.3 Abstract Resources

One important feature that distinguishes multi agent systems in charge of smart
spaces from other multi agent systems is that they reside on the frontier between
the physical and computational worlds. To function well, those systems have to
not only accept but also embrace the physical world around them (we refer to
this point again in Section 8).

As a consequence of this, it becomes necessary for the system to explicitly
describe not only the services provided by its agents but also those provided by
physical hardware and non-agent software present on available computers.



A common approach to this problem is to add agents to represent all needed
physical and computational capabilities of the host environment. Hive, for exam-
ple, uses “shadows” to represent physical devices accessible on or from particular
computers. Metaglue has agents that represent individual devices. But how do
we know where to start those shadows or agents? An unsatisfactory way is when
startup has to be done by a human or by a script leaving the system with no
way of reasoning about it or taking action on its own. In case of Metaglue, the
device-controlling agents upon startup retrieve the name of a computer they
should tie themselves to. In our view, the agents that directly interact with
hardware or other software should be able to start dynamically (see Section 3)
and dynamically find the computers with all necessary equipment and software.

Ezxample 2. Currently in our system, the main way of providing the speech-input
service is with personal wireless microphones connected to computers running
third party speech recognition software. In our conference room we have several
computers with the right software, several microphones, and an audio mixer that
allows us to route microphone signal to any of the computers.

When any of our agents requests speech-input service, Rascal, our resource
manager, checks the description of our speech input agent for all of the services
that it will need to provide the service. Those will include a computer with
a speech recognition engine, a microphone, and a connection between the two.
Neither the speech recognition engine nor the microphones have software proxies
in our agent systems yet the resource manager is able to reason about them.
Rascal ensures that the speech-input agent starts on a computer with the right
speech recognition engine and will award a microphone that is not being used for
other tasks (e.g. teleconferencing) to the agent, and will ensure that there exists
a connection between the two (see Section 8 for discussion of connections).

5 Arbitration

At the heart of resource management is arbitration. By our definition of a re-
source manager, when two or more agents vie for the same limited resource, the
resource manager has to evaluate which gets what.

In this section we argue that arbitration is essential in any larger system
embedded in a smart space because it allows individual agents and applications
to be written without having to take other agents’ and applications’ needs into
considerations. It also provides for the most basic (but not the simplest) appar-
ently smart behavior of a space. Some arbitration schemes applicable in open
agent systems, such as marked-based resource allocation, will prove less effective.
Cost-benefit based on self-reported needs and preferences has proven a good so-
lution especially when combined with access control (which limits requests by
untrusted and potentially malicious or non-conforming agents).

In addition, in cases where a resource needs to be taken away from a requester
to satisfy a new, more urgent, request, every effort should be made to find a
replacement for the withdrawn resource.
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5.1 Why Arbitrate

Arbitration allows for easier implementation of individual agents: the agent
writer can view the world more selfishly than if there was no arbitration mech-
anism. With arbitration in place, the agent programmer can be sure that if any
other agent needs resources more, the system will take care of necessary re-
allocations (just like in properly multitasking operating systems programmers
do not need to worry about yielding to other processes).

Another (obvious) benefit of arbitration is achieving apparent “intelligent”
behavior of a space. Just like animals are expected to use their body parts inten-
tionally and in a coordinated fashion, we also expect computer-steered spaces to
be “aware” of the interface devices.

5.2 How To Arbitrate

The simplest way of resolving ties among requests is to award a resource to the
most recent request. For many reasons this may prove to be insufficient. For
example it would not be desirable for a new email notification to take over a
screen during a video conference with one’s boss. Hence there exists need for
some analysis before allocating resources. Rascal, for example, uses a simple
cost-benefit analysis (details in [15,14]) to decide who should be awarded a
particular service. This scheme relies on agents accurately and honestly reporting
how urgently they need a resource. This approach is potentially problematic in
that it allows for malicious or inaccuarate representation of one’s needs.

A more natural and simple approach to arbitration in potentially open sys-
tems in smart spaces seems to be one in which some access control mechanism
is used in conjunction with some priority-based scheme. In such a situation the
access control mechanism would weed out requests from untrusted and unautho-
rized agents and then a priority mechanism would decide which of the trusted
and authorized requesters should get what resources. In a model where agents
can act on behalf of spaces or people, the role-based access control model [24]
seems a viable option. We discuss the need for access control further in Section
10.1.

Other approaches had been developed with open systems in mind, notably
some based on market mechanisms [3,4]. Those approaches require existence of
a central “bank” and some sort of currency. Such approaches, in their natural
form, are not well suited for smart environments. It should not be possible, for
example, for someone thousands of miles away to buy control of the room with
their extra virtual currency.

Because resource managers can take resources away from requesters, it is
reasonable for a requester to keep a resource even after finishing a task if it
expects it may need the resource again in near future. For example, a email
notification agent may want to keep its output channel as it is desirable for the
sake of consistency in space’s behavior for those notifications to come through
the same channel unless there is a good reason to change.
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5.3 Arbitration Should Allow for Clever Re-allocations

Consider the following scenario: a space is equipped with a TV set, LCD projec-
tor, VCR, video mux, and some computers. The VCR (that also acts as a TV
receiver) can be connected to either the projector or to the TV set through the
video mux. The computer, however, can only be connected to the projector.

The user is watching the news on the projector, this being the best resource
to satisfy a request for a large display. Then the user hears some really important
news and decides to share it with a friend while watching the rest of the newscast
and so she requests her email agent. With our simpler resource management
schemes in place, the projector would be taken away from the news and allocated
to the email agent. The more desirable behavior, in this situation, would be for
the newscast to be moved over to the TV set and the email to be then displayed
on the projector.

The point here is that in many cases the only way to accommodate a new
request is to take a resource away from one of the currently active requests. The
disturbance can often be minimized, however, by reallocating the old request to
a different service. The insight here is that the sets of services that can satisfy
various requests overlap only partially and the relationships are often more com-
plex than just proper inclusion (see Figure 1). The reason for it is two-fold: first,
different kinds of devices can provide different sets of services; second, physical
connections for different kinds of signals are routed differently (so, for example,
in one of our spaces the video signal goes through a multiplexer and thus can
be connected to either of the projectors or to a TV set, while VGA connections
are hard wired).

dTV Text Outpyt

Speech Output

Projector LED Sign

Fig. 1. Different kinds of tasks can be performed with different but overlapping possible
sets of devices: both the TV set and the projector can be used for watching videos or
tv while only the projector can be used for teleconferencing. At the same time, the
projector, the LED sign or the speech output can be used for text output.

Allowing for re-allocations makes arbitration among requests much more
complex: whenever a resource manager receives a request for a resource, it has
to look for a solution that satisfies not only the new request but all of the old
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ones as well (as far as possible). In other words, a simple task of selecting the
best resource for a request turns into a global constraint satisfaction problem.

One point to keep in mind, of course, is that re-allocations are costly. If we
move the newscast from a projector to a TV, the user is bound to find it distract-
ing. In some cases disturbance will be minimal, for example a mail notification
agent will not mind a re-allocation if it happens between notifications—the next
time it will simply use a different output device. It’s more serious in case of
agents that may have to rebuild a lot of their state after re-allocation. Some
examples of this would be a camera which was carefully focused on a face or
area of the room, or an Internet browser with all of its browser history.

Reasoning about the cost of a re-allocation has to be a part of the overall
arbitration process. In Rascal, requesters can specify how costly a re-allocation
would be to them and the cost can vary between zero and the cost of tak-
ing the service away altogether. The cost of a re-allocation in Rascal has two
components: the fixed cost specified by the requester and the difference in utility
between the new request and the old request (with the stipulation that it cannot
be smaller than zero).

6 Ownership of Resources Over Time (Resources Vs.
Tasks)

In this section we argue that many of the services provided by agents in a
smart space (e.g. display service provided by a projector) are not tasks and
therefore they should be managed differently from tasks. In particular requesters
should be given ownership of resources over periods of time. Agents need to own
their resources as they are often engaged in long-term jobs that can be changed
or modified. We discuss all of this by comparing what we mean by resource
management with task management performed by the faciliator agent in the
Open Agent Architecture (OAA) [19].

Open Agent Architecture (OAA) is a good example of an agent system that
could control a smart space and that also has a complex inter-agent facilitation
scheme. What needs stressing, however, is that the OAA “facilitator agent”
actually performs task management and not resource management. That is, the
facilitator agent will break down a task into simpler sub tasks and allocate those
to individual agents who can fulfill them best. It will not, however, ensure that all
of the resources needed for the tasks are available and not in use by other agents.
Hence OAA is well suited for a task like sending the current Boston weather
report to all of requester’s friends. The task will be broken into components,
appropriate information obtained and message sent. OAA is not well suited for
tasks that cannot be thought of as point-like in time. Implicit in the OAA model
is the assumption that agents can never conflict over the use of scarce resources.
Task management is, of course, very important but in a system that controls a
physical space with a large number of scarce resources task management should
work hand in hand with a resource manager.
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It is more natural to think of many agents as having a life cycle, and going
independently about their own long-term jobs. For example, an agent listening
to and recording conversations in the room in order to be able to bring back
audio snippets via keyword searching, needs resources over an extended period
of time to complete its job. Showing a movie can be thought of as a task but it
can be interrupted, modified, or abandoned in the middle. It can also prevent
other agents from using a display for their jobs. In that sense, showing a movie
is different from the OAA view of a task.

7 Third Party Resource Request Annotation

Once the core resource management system is in place, it should be easy to
write modules that do specific types of reasoning and then use that reasoning
to annotate requests to limit or reassess possible matches. Often knowledge of
the world has direct impact on the appropriate nature of a specific resource to
a specific request—this knowledge being outside either the resource manager’s
realm of expertise or the requesting agent’s knowledge—and it is imparative that
it be easy to have a third party entity contribute such knowledge.

For example, say a user is in a particular room and desires to play a song via
his SongPlayer agent. The user would start his agent that would then ask for and
locate the bits of the given file, and then attempt to gain access to another agent
which would play the actual file. This, of course, would be a resource request for
an agent with the ability to play sound.

However, there is also another criterion to the desired agent: location. If the
user has been wandering from room to room, it is important that the sound
playing agent used be in the room the user is in. This is knowledge that needs
to be appended to the request, but neither the resource manager nor the song
requesting agent would appropriately have this knowledge.

It would be a violation of normal notions of modularity if the SongPlayer
agent had to check the user’s location and annotate its resource request. It also
seems unwieldy for the resource manager to be responsible for finding and main-
taining this knowledge; certainly if this knowledge were in the resource manager’s
domain, then much other knowledge would be as well. Furthermore, the nature of
a flexible agent system is knowledge itself is unlikely to be codified in a universal
standard, and so the resource manager would be responsible for translating the
output of various other agents into proper resource request annotations. Solving
this problem is definitely an active area of research, but in this case it make for
a massively large and unwieldy project in the writing of the resource manager.

The best solution we found is to have third party agents that extend the
functionality of the resource manager. Authors write agents or functions which
pattern match on resource requests and add then additional criterion to those
requests as appropriate. In the example above, a distinct other agent which
tracks the user eavesdrops on all resource requests and annotates any relevant
ones to only consider physically local possibilities.
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Request annotations should be able to happen in two ways. The first is
modifying the request before a list of possible matches is generated. The second
method is filtering the possible matches at the tail-end of the process, after the
list of possible resources has been generated. Regardless of method, third party
annotators allow for a real componotization of the agents; without them either
one or the other agent on any given transaction needs to know too much about
the significance of the job at hand. The idea is to have dumb objects wired
together smartly to get thinking results, not to have heavyweight objects that
are hard to write or maintain.

A further advantage of third party annotators is being able to provide the
room with a way of dynamically adapting to equipment failures by writing mod-
ules that extended reasoning about certain particular resource allocation prob-
lems. For example, if we had an agent that could tell if a projector was broken by
looking at the screen with a stearable camera, we could easily have an agent up-
date the resource manager so all resource requests for projectors automatically
remove that projector from consideration.

Furthermore, having the ability to have third party annotators should, we
hope, serve nicely in the future when contemplating adding large features to the
system such as access control (see Section 10.1). Once the model of requesting
resources and receiving them is established, pretty much anything can be thought
of as modifying or changing the appropriateness of a given resource to a given
request—namely annotating a preexisting request.

8 Connections

One style of resource that deserves special attention are connections. Connections
are a vital piece of the background of a smart space, and a system with a resource
manager that fails to manage them is bound to end up in serious trouble.

The way our room is wired, we have several muxes and switches allowing for
information to flow from source devices (cameras, VCRs, microphones) to output
devices (projectors, TV sets, modems). Computers are also integrated into this
web as either sources or sinks. We also have some trunk wires connecting muxes
to muxes, for example, which can only carry one signal at a time. This, of course,
is a limited resource. We are a long way from the time when the optimal carrier
of all information signals (audio, video, etc.) is the same Ethernet, and until
then we need to take into account the specialized wires in an intelligent space.
This often means we do not have a fully connected graph of signal sources and
sinks, and so the physical connections themselves are a limited resource that
needs management.

Due to this, we enter all our connections into the manager as “connection
resources”. When an agent requests, say, a VCR and projector combination,
they also request the collection of resources consisting of the path of connections
leading from the VCR to the projector.

We keep the connection aspects of the system very much behind the scenes
as an extension to the resource manager. Just because they are a crucial piece
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does not mean that they need to be in the forefront of a high-level agent pro-
grammer’s attention. Agents can just ask for resources with the caveat that they
are connected, and do not look at the resources involved in the connecting itself
at all. The connection extension to the resource manager forges the actual path.

9 Special Requests

We have discovered a need for a few “special requests” for resources that seem
to lie a bit outside the parameters discussed above. Happily, these are extensions
of above, and can be added layers on top of the existing system. We will briefly
discuss them in the following sub-sections.

9.1 “Screen Saver”

Many agents may want to use resources for a low-level background effect if the
resources are not being used for something else. For example, the news ticker or
weather forecast agent may want to use the LED sign if there is no better use
for it.

The “Screen Saver” type of request gets automatically re-filled after the re-
source is taken away, used, and then released by some other agent. It is a way
of the agent saying, in effect, “I want these resources whenever they are free. If
you take them away, then give them back when they become free again.”

The advantage of this approach is that it prevents a busy wait on the agent’s
side. Without “Screen Saver” requests, an agent would have to poll the resource
manager from when it has lost its resource until it obtains it again.

An alternative solution would be to have blocking requests, which would also
work. We have not closely examined this option, however.

9.2 Auto Upgrade

When a resource being used by an application is released, it is worth checking to
see if other agents would be better served by getting that resource now that it
is available. Agents can specially request that they do not mind being switched
to a better resource at any time.

9.3 High-Urgency Short-Term Loans

Some requests are for more task-oriented reasons. In these cases, a resource may
be needed only for a brief moment. For example, an alert agent might briefly need
the speakers of the room to inform a room occupant that there is a call waiting.
If the occupant was watching a movie, it would be much more smooth if the alert
agent could just borrow the audio for a moment and then give it back. Without
borrowing, the original agent would have to re-request the lost resources, and
again we would have the polling situation described in the previous sub-section
9.1.

Loans, of course, make cost analysis in the resource manager even more
difficult and we have found no easy answers as of yet.
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10 Future

In this section we talk about two issues in resource management in smart spaces
that we have identified as important but have not yet researched in depth.

10.1 Access Control

The real world is full of access control mechanisms. In particular, there are many
ways in which access to spaces and enclosed equipment is restricted to certain
people. The same is true of information. It stands to reason that agents acting
on behalf of people should be subject to similar constraints their owners. If Alice
does not have a key to Bob’s office, then she is probably not supposed to be able
to use his VCR either. We can take this parallel a step further and introduce
some more interesting problems.

All members of our lab have a right to enter our conference room. They
also have the right to control all of the a/v equipment, the lights, etc. To what
extent should this right be extended to their electronic proxies? Should people
be granted access to the devices when they are not physically present in a space,
e.g. while on a trip to a faraway country? Should the access to the devices only
be granted to authorized people on the condition that they are physically present
in the space?

If we assume that physical presence is required of most people, let us take
another scenario into consideration. Our research group has a meeting and one
of the members is in a different city and needs to teleconference with us. During
the meeting she needs to show us some of her results. Should she then be allowed
to control our projectors and our slide show software? Should telepresence be
treated equally with physical presence? Should perhaps one of the people phys-
ically present at the meeting grant her the permission? If so, who should have
the rights to grant permissions to others?

As we said before, we are not clear yet how access control should be performed
in a smart space but we are quite certain that the resource manager would have
to be a part of the process. After all, it is the resource manager that grants
agents access to particular resources. Thus the resource manager needs to be
able to find out what resources the requester has rights to.

10.2 Cooperation

As research on smart spaces progresses, it becomes more and more likely that
several spaces will be controlled by the same software. A number of people will
be moving from one smart space to another and will expect to be able to make
various requests in those spaces. They will also expect some of their agents to
“follow” them. Building a single resource manager that would manage resources
of all the spaces and all the people is clearly impractical. hence, there will have
to be a number of resource managers, each representing a particular collection
of resources and requesters. Given that spaces may border with each other or be
enclosed by one another, and also given that agents acting on behalf of people will
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need to use resources provided by spaces, it is necessary for resource managers
to communicate with one another to perform optimal resource allocation.

11 Contributions

We have outlined a number of issues that we found to be important in the design
of high-level resource management systems for smart spaces. Smart spaces are a
relatively new research area and few projects have reached a point where resource
management would become critical. We believe, however, that all projects will
eventually face these problems once their basic infrastructure is in place and
multiple, independently developed, applications are being ran in a space at the
same time.
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