
Danny Swisher
Tim Crossley
Patrick Healy
Matt York

December 17, 2009

Aggregate Instructor Information 4

System Overview 4

Entities 4

Primary Functions 4

Development Environment 5

User Interface 6

Homepage 6

Search Results 6

Profile Pages 7

Leaderboards 10

Sample User Scenario 11

Data Flow 13

Name Normalization 14

Time Schedule Crawler 15

Course Evaluation Crawler 16

RateMyProfessors.com Crawler 17

Salaries Crawler 17

Publications Crawler 17

Homepage & Images Crawler 18

Awards Crawler 18

Compiling Data: MetricMaker 18

2

Database 19

Search 19

Autocomplete 20

Evaluation and Experiments 20

Quantitative Analysis 20

Informal User Evaluations 24

Conclusions 26

Goals 26

Achievements 26

Future Work 26

If We Could Go Back... 27

Appendix 28

Roles 28

Consent Form 29

RateMyProfessors.com Rating Categories 30

Outside Code 30

Sites Crawled 31

Instructions 31

3

Aggregate Instructor Information
Information about the University of Washington’s colleges, departments, course offerings, and
instructors is spread across many different internet services. Students who try to learn about their
instructors from many different angles, such as reviews and teaching performance, struggle by searching
across multiple websites and search engines. This information is critical in deciding which courses to
take and which instructor to take them from. Even if a student spent the time finding these resources,
there is no easy way to analyze all the data and compare between different instructors, departments,
and courses.

In Autumn 2009 we developed Instroogle.com, a site dedicated to aggregating, organizing, and
presenting the valuable information about UW instructors in one place. Our service is unique and allows
students to learn more about their university and make well-informed decisions when planning their
class schedules.

We learned a lot from building Instroogle, such as how to handle data collection processes that take
multiple hours and the importance of proper testing. This was a very positive experience, and the
amount of effort and amount of learning that went into this project is immediately apparent went viewing
the ridiculously awesome application at Instroogle.com.

System Overview

Entities
Instroogle lets users compare three types to each other: instructors, departments, and courses. We
compile metric averages such as salaries and course evaluations for all the instructors that teach a given
course, all the instructors in a department, and for each individual instructor. This abstraction allows a
user to compare Stuart Reges to the Dance department, compare all the teachers of Operating Systems
to the Business School, or compare the instructor averages of CSE 142 against Hank Levy.

Primary Functions
Instroogle lets users find public instructor information and compare instructors to each other,
departments, courses, or the University of Washington as a whole.

Find
Instroogle is a search engine at heart. Our main goal of the project was to allow students to learn more
about the professors teaching the courses at the University of Washington. Our Find technology allows
users to search for data-rich profiles on instructors, departments, or courses.

4

http://instroogle.com
http://instroogle.com

Compare
Instroogle allows users to compare instructors, courses, and departments side by side. This technology
may only be simulated elsewhere by opening many different pages of UW course evaluations or
RateMyProfessors reviews. Instroogle’s comparison engine offers a service found nowhere else.

Leaderboards
Instroogle’s leaderboards page allows users to view rankings of courses, departments, and instructors
based on a wide variety of metrics. From maximum monthly salary to highest teaching effectiveness,
users can stack up instructors, courses, and departments against each other to learn more about their
university.

Development Environment
We built our entire system in Ruby on Rails, including many crawlers and number crunchers. Though we
developed on local machines (mostly Macs with one bad apple running Windows), Instroogle.com is
running on a Dreamhost virtual host through Phusion Passenger, an Apache module to run Rails apps.
We are currently running on a SQLite3 database, though because SQLite3 is a very slow and lightweight
database management system, we will transfer to MySQL very soon. We used the subversion version
control system.

5

User Interface

Homepage

Figure 1: Instroogle Homepage

Our homepage is designed to be as simple and minimalistic as possible. It features our main site
navigation at the top (“Find”, “Compare”, “Leaderboards”), a search bar which features autocomplete
results, and three leaderboard samples – one for instructors, courses, and departments – sorted by
randomly-selected metrics.

Search Results
Because Instroogle supports three main types of entities, we can structure our search results uniquely
around those types.

6

Figure 2: Search page

In the above search-results page, users can see all things related to “Paul Beame” including his
homepage, the department he teaches in, and the courses he has taught. Each result links to the
appropriate profile pages.

Profile Pages
Instroogle has three main classes: Instructors, Courses, and Departments. Each one of these types has
a profile page with dynamically-generated content based on the respective object one is viewing. Here is
an example of an instructor home page.

7

Figure 3: Instructor Profile Page

This page displays information for the specified instructor, such as name, courses this instructor has
taught, and aggregated data from RMP and course evaluations. If this instructor had won any awards,
they would be listed under the “Awards” header. And similarly, if this instructor had any publications that
our publications crawler had found, pointers to said publications would be given under the
“Publications” header. Under the “Courses taught” section and the “Departments taught in” section,
users have pointers to other data in Instroogle. If we proceed to the “DRAMA” department from the
above page, we are presented with an example of a Department profile page.

8

Figure 4: Department Profile Page

Department profile pages display the courses that are offered in the course as well as all the instructors
that have taught in that department, sorted by their average course-as-a-whole course evaluation
scores. The course evaluation and RateMyProfessors review data visible on this page and course profile
pages is simply an aggregation of every instructor who has taught in the respective department or
course. Since we only have data about individual instructors, this is the best way to compare
departments and courses. The course profile page is very similar to the department and instructor home
page except that the profile image is coded to display the image of the instructor who has the highest
rating for that course.

9

Leaderboards

Figure 5: Leaderboard Page

In the above example, every instructor in Instroogle’s system is ranked according to the metric
“Easiness,” a metric which we pull from RateMyProfessors.com. The results are paginated with 10
results per page. Users can change the metric of the ranking by simply clicking the links on the left side,
or change class being ranked to department or course by clicking the links at the top of the page.

You may have noticed the “Compare” buttons from the profile pages and leaderboards page. Instroogle
also features the ability to compare individual instances of courses, departments, and instructors
directly. Clicking “Compare this instructor” or “Compare” adds the specified object to a “comparison
cart” for the user’s current session. The number of items in the comparison cart is displayed at the top of
the page in the central-navigation area.

Clicking on “Compare (2)” brings the user to the comparison page which features list of objects sortable
by all the different metrics Instroogle calculates.

10

Figure 6: Compare Page

On this page, users can add new instructors, departments, or courses directly and sort the list based on
the metrics they’ve chosen on the left.

Sample User Scenario

Scenario 1: Find the Right Teacher for a Course
Annie is planning on taking Dance 101 next quarter. She’s heard good things about the course from
friends of hers who took the course. However, her friends have opposing opinions about their professors
who taught the course. Lisa, who took the course from Tonya Lockyer, like the way her instructor taught
it, but Becky, who took Dance 101 from Jamie Hall, didn’t. Annie goes to the Instroogle homepage and
searches for “Dance 101”.

Figure 7: Instroogle homepage, query “Dance 101”

Clicking “Dance 101” in the autocomplete results brings her to Dance 101’s homepage.

11

Figure 8: Dance 101 profile page

From this screen, Annie can see the ranking of instructors who have taught Dance 101 before. Annie
decides to enroll for Tonya Lockyer’s section because she has a higher rating than Jamie Hall.

Without Instroogle, Annie would have had to consult RateMyProfessors.com and average all the reviews
for each potential instructor of Dance 101 to make this decision.

Scenario 2: Comparisons
Jake is finishing up his freshman year at the University of Washington and trying to decide what to major
in. He knows that he is a wiz with money and loves learning about business, and has narrowed his
choices down two three departments: Economics, Business Administration, and Finance. Jake uses
Instroogle’s comparison engine to compare the three departments. From the Comparison page, he adds
the three departments.

12

Figure 9: Compare Page

After adding the 3 prospective departments, Jake adds the metrics he wants to use for comparison. He
can tell by sorting on “Easiness” that Economics is the easiest major to study in. But when Jake sorts on
“Course content” to find the department with the courses that have the highest-rated course content on
average, he learns that Finance is the best.

Figure 10: Sort on “Course Content”

With all this data at Jake’s fingertips, he decides to major in Economics because he feels that majoring in
ECON is the best opportunity for him to have an enjoyable time in college and still learn a lot about
money.

Without Instroogle, there is no way Jake could have compared departments – the technology does not
exist elsewhere.

Data Flow
We get specific data from many different data sources on the web. We divided the data crawlers (a very
loose definition of the word “crawl” since we mostly just scrape) into different modules based on the
pages they scrape. Once we have acquired all the data, we then run the module MetricMaker that
computes and compiles the data into a Metrics table. A data flow with the dependencies can be seen in
the diagram below. Most of the crawlers depend on having a list of instructors, hence the reason Names
crawler, Time Schedule Crawler, and Evaluation Crawler go first.

13

Time Schedule
Crawler

Instructors,
Courses, Course

Instances

Evaluation
Crawler

RateMyProfessor
Crawler

Names Crawler

Salary Crawler

Awards Crawler

Homepage &
Image Crawler

Publication
Crawler

Other Data

Metrics
MetricMaker

Name Relations

Figure 11: Data Pipeline

Name Normalization
Inconsistent naming was the biggest problem with our crawlers.

Figure 12: Inconsistent Naming Between RateMyProfessors and Time Schedule

An instructor might be listed as “William B Beyers” in the Time Schedule, but listed as “Bill Beyers” on
RateMyProfessors. To solve this, we built a name normalization algorithm that utilizes nicknames and
common spellings of the same name.

find_by_name name
 find all instructors with given first name and last name
 return entry if only one entry
 If there are no entries, try all related names using BehindTheName
 returning if one found
 If still no entries, try remove punctuation from the name
 return if one found
 If more than one result, try middle initial
 return if one found
 If still more than one result, write to common names log and return nil

14

This algorithm is able to resolve names such as “Marty Stepp” to “Martin Stepp”, “Stu Reges” to “Stuart
Reges”, and “Yong-Pin Zhou” to “Yongpin Zhou”.

The Names Crawler crawls http://www.behindthename.com/ for maps of names to related names.
Related names are names that are used interchangeably or as common nicknames. For example people
named Richard often prefer to be called Dick, this example clearly shows how these related names are
much more complicated than simply shortened or simplified versions of names like Dan and Daniel.

Time Schedule Crawler
The first and most important web crawler we have is our crawler of UW’s Time Schedule, which contains
course data for every quarter between Autumn 2006 and Winter 2010. Our crawler screen scrapes data
from every available quarter for information such as courses, departments, instances of courses, and of
course instructors for those courses. We also grab every course’s description and load all of this data
into our relational database. With this data we are able to tell which courses any given department offers
(e.g. CSE offers 142, 143, …), and additionally the instructors who taught those courses for every
quarter. The aggregation of this data is already unique and very useful; discovering this data by hand
right now would be tedious.

UW’s time schedule HTML contains many flaws which really impeded the progress of the crawler for
many weeks. For example, the HTML structure is invalid in some ways, such as the following example.

Figure 13: Bad HTML Formatting

The HTML is structured in such a way that the beginning of a <P> tag signifies the beginning of a new
college (e.g. College of Arts and Sciences). However, the page does not close open <P> tags before
starting new ones, which made XPath queries especially difficult. Luckily, the version of Hpricot had a
bug that turned out to be a feature: it recognized the beginning of a new <P> tag as also the end of a
previously-opened <P> tag.

In addition to battling with poorly structured HTML, we also came across naming conflicts between
different quarters.

15

http://www.behindthename.com/
http://www.behindthename.com/
http://www.washington.edu/students/timeschd/
http://www.washington.edu/students/timeschd/

Figure 14: Naming Conflicts

Clearly Stuart Reges taught both of the courses listed above and yet the time schedule, which one
would expect to have one central database for producing the output above, prints different parts of an
instructor’s name for no apparent reason. These inconsistencies were very troublesome. In fact, our time
schedule crawler performs check against about 8 different complex regular expressions to attempt to
parse an instructor’s name out of the HTML code. We eventually consulted our BehindTheName data, a
“nickname database”, which helped resolve some of the inconsistencies. See Name Normalization for
more detail.

After our time schedule crawler loaded our database with instructors, we were able to consult a vast
array of other sources for information about UW instructors.

Course Evaluation Crawler
The course evaluation crawler grabs all the compiled student course evaluation information from the
Course Evaluation Catalog (CEC). To get access to the CEC you need to authenticate using the UW’s
UWNetID PubCookie authentication system. After spending multiple days trying to right a script that
simulated a user login and running into all sorts of “your browser isn’t running javascript” errors and
being led in circles, we logged in manually and used a Firefox extension called DownThemAll to
download the CEC in bulk and crawled it locally.

Figure
15: Course Evaluation Sample

16

http://washington.edu/cec
http://washington.edu/cec

The CEC is very well structured and could be easily scraped using an html parser and a few regular
expressions. Each course evaluation is linked with a course instance found by the Time Schedule
Crawler.

There are instances where the course evaluations report a different instructor teaching the course than
the time schedule does. In these cases (522 total), we overwrote the time schedule crawler data because
it is older data, and because a course evaluation is more likely to contain the name of the person who
actually ended up teaching the course.

RateMyProfessors.com Crawler
Our RateMyProfessors.com (RMP) screen scraper crawls RMP’s University of Washington homepage for
instructor reviews. RMP’s HTML formatting is precisely structured in such a way that we were about to
execute XPath queries easily on the raw HTML to gather data.

Figure 16: RMP sample instructor review page

RMP allows users to write reviews of instructors they took a course from. Users specify a rating between
0 and 5 for the instructor’s easiness, helpfulness, clarity, and rater’s interest. We screen-scraped RMP
for every review of every instructor we had in our database.

Salaries Crawler
Because UW instructors are employees of the state, their salaries are public data. lbloom.net gives
salary information for all state employees, and there is a neat compiled list of UW salary data for odd
years. Only years 2009 and 2007 give good enough data to allow us to accurately compare salaries
between instructors.

Figure 17: lbloom.net salary sample

This information includes employee type (ET, 6 for faculty), pay unit (PU, M for monthly), and full time
percent. The crawler matches the name given with an instructor in the database, storing a new salary if
an instructor is found.

Publications Crawler
The publications crawler relies on CiteSeer, a service hosted by Penn State University, to find
publications matching a given instructor name. It has a built in search capability which the publications

17

http://www.ratemyprofessors.com/SelectTeacher.jsp?sid=1530
http://www.ratemyprofessors.com/SelectTeacher.jsp?sid=1530
http://lbloom.net/
http://lbloom.net/

crawler makes use of in order to target specific names, instead of crawling through the entire database.
The general algorithm used is as follows:

For each instructor:
 Search for instructor.name
 For each result on first page:
 Follow link, extract title and author list from page
 For each author in list:
 If author name matches an instructor in our database:
 Add author name, publication title to database

For efficiency, the crawler remembers which pages it has viewed, and will not revisit a page. It also
remembers which instructors it has searched for, in order to better restart in case of errors or other
shutdowns while crawling. Because of the large amount of pages crawled, the entire crawl takes a very
long time to complete. It is also vital to throttle the network access, as unrestricted crawling would put a
very heavy toll on the remote server.

Homepage & Images Crawler
The homepage and image crawler uses the public Google search API to scan potential instructor home
pages in the washington.edu domain. Searches are conducted by instructor name, and all results are
examined and tested via the homepage classifier. This classifier is the only component of our application
to do any form of classification or similar AI. It is trained on a set of 64 examples, 41 negative and 23
positive. These examples were the first results from a Google search on an instructor’s name, and were
labeled by hand. The current features detected by the classifier are just words; HTML formatting is
stripped, and the URL is not taken into account in the base classifier. However, there is a prior step, in
which certain URL patterns are rejected outright. An example would be the pattern ‘/crscat’, which
contains course catalog information.

Once a page is determined to be a homepage, we scan the page for images, attempting to find one that
is likely to be an image of the instructor in question. A potential image is one having a width to height
ratio within a certain range (0.5 - 2) and a certain minimum size (100 x 100px). We store all images that fit
these criteria. In the future, we would like to include some functionality allowing users to validate images,
as the image processing needed to automatically discover images of humans is currently beyond the
scope of this website.

Awards Crawler
The awards crawler is probably the simplest crawler used to gather data. It scrapes a single page:
http://www.washington.edu/uaa/teachingacademy/awards-past.html
and reads the instructors listed under each award category. Because the list of awards goes back much
further than our other sources of data, many awards are not matched to current instructors. These
awards are discarded, under the assumption that the professor is no longer actively teaching classes at
UW.

Compiling Data: MetricMaker
Once we’ve crawled all the data, we pre-compute many metrics on the data for rapid lookup during
runtime of our program. For example, we pre-compute the averages of all of the RMP review entities for
every course, department, and instructor. With these averages and the averages of every other metric
we have, we are able to run our comparison & leaderboards engine very quickly. If these values were not
pre-computed, the page-load time would surely take a long time.

18

Database
The heart of our system is our relational database which stores instructors, courses, departments,
reviews, course evaluations, salaries, and more.

id
quarter
year
instructor_id
course_id
section

CourseInstance
id
quarter
year
course_name
whole
enrolled
effectiveness
interest
content
grading
course_instance_id
amount_learned
role
surveyed
contribution

Eval

id
dept_id
title
description
number
dept_abbreviation

Course

id
name
abbreviation
parent_id
url

Department

id
date
instructor_id
name

Award

id
instructor_id
img_path

InstructorImage

id
fname
mname
lname
homepage_url
rmp_url
img_path
dept_id
num_reviews
num_evaluations
index (lname, fname)

Instructor
id
instructor_id
course_id

InstructorCourse

id
metric_type
instructor_id
dept_id
course_id
rmp_avg_rater_interest
rmp_avg_clarity
rmp_avg_easiness
rmp_avg_helpfulness
eval_avg_contribution
eval_avg_grading
eval_avg_content
eval_avg_interest
eval_amount_learned
eval_avg_effectiveness
eval_avg_whole
avg_monthly_salary
max_monthly_salary
min_monthly_salary
current_monthly_salary

Metric

id
prefix (index)
length
entity_id
entity_type

PrefixToEntity

id
url (index)
instructor_id
title

Publication

id
reviews
instructor_id
easiness
clarity
helpfulness
rater_interest
usersupplied_course_name
comments
fname
lname
mname

Review

id
instructor_id
months_paid
full_time_percent
job_title
name
employee_code
pay_type
salary

Salary

BelongsTo

TaughtBy

HasOne

InstanceOf

BelongsTo

BelongsTo

id
name

Name

id
parent_id
child_id

NameRelationship

BelongsTo HasOne

BelongsTo

BelongsTo

BelongsTo

BelongsTo

PointsToChildOf

BelongsTo

Searchable Entity

Helpers

Crawled Data

Figure 18: Relational Database Schema

Our relational database is an intricate part to the execution of our program, and every page of our
application uses the database to present information in some way.

Search
We decided that the benefit of some sort of full text search would not be very useful to our users.
Instead we should provide search that quickly finds results based identifiers such as names, and
relationships between entities. Our search is able to accomplish this by using complicated SQL
statements that weight results on the fly through the very fast SQL database query manager. While the
semantics of how we accomplish this in SQL are uninteresting, what is interesting is what attributes we
search on and how we assign weights.

To find relevant courses the highest weighted situation is where a course has a number and department
abbreviation that show up in the search query. The next highest weighted situation is if a course has ever
been taught by an instructor with a first name or last name that can be found in the query terms; this
situation is weighted five times less than the first, so it would take five of these types of situation to

19

match a course to matches the first situation. The last two situations are that a course has matching
department abbreviation or number, which are given much lower weighted values. Searching for
instructors and departments is almost identical except for instructors matching first name and last name
is the highest weighted situation and for department matching name is the highest weighted situation.
Now that the weights are clear it is important to understand that these situations are cumulative. An
instructor can have multiple courses that they have taught that have matches in the query terms. This is
handled in our SQL queries because we sum all the matches we find and Group By id so all the matches
weights for each instructor, course, or department are summed together to create a final score which is
used to determine the order of our results. These scores are independent amongst the different types of
entities in our system because our results are separated by type.

Autocomplete
Originally we developed our autocomplete by taking advantage of SQL’s Like operator. However, speed
became an issue as the number of rows in our database grew larger. To make this autocomplete fast
again we decided to do some pre processing. We initially thought that building a trie (a tree where the
nodes contain letters, and walking the tree gives all possible words for some dictionary), but we decided
to also try an implementation that could still take advantage of the quick disk access provided by a
database. Our database implementation uses a table with columns (prefix, entity_id, entity_type), where
prefix is a string that represents an autocomplete query, entity_id is the identifier of a course, instructor,
or department, and entity_type identifies what type of entity to refer to. We then fill this table with all
possible prefixes of all the possible things we would expect our autocomplete to handle, like instructor
names, department names, etc. Then when the user types into the search bar we make a JavaScript
request and ask for all entities in our prefix table who match the query. This strategy eliminates the need
for the Like operator, but allows us to use the benefits of a database, and was our fastest solution to the
problem.

The autocomplete is still a little slow on Instroogle.com. There are a few external factors to this, including
a relatively slow host (DreamHost’s cheapest account), and a slow database (SQLite3). Ideally, we would
create a dedicated service for autocomplete that holds a trie in memory for an extremely fast
autocomplete a la Google Suggest.

Evaluation and Experiments
We evaluated our site in two general ways; first through quantitative measurements of several of our
modules used to discover and classify content, and second through user feedback in an informal user
study.

Quantitative Analysis
Most of our crawlers were extracting information from well structured sources. Only the homepage
crawler used some form of classification algorithm, the others just used document structure and layout,
discovered manually. For these crawlers, we list several statistics on their data extracted, usually relating
to the amount of data covered by that crawler.

Time Schedule
The time schedule data is, in many ways, the central point for all data in the application. It contains all
courses and provides most of the instructor names. As previously mentioned, some instructors had
duplicated names, such as ‘Reges, S’ vs ‘Reges, Stuart Thomas’. Some of these duplications had a one-
to-one mapping between short form names and long form, whereas others had multiple long names
matching one short name. One-to-one mappings can be reduced to just one instructor with a fairly high

20

degree of confidence, but many-to-one mappings are unsolvable with just the given data. We could
make an intelligent guess by comparing classes taught, but this method cannot be foolproof.

Occurrences Percentage of relevant data

Courses

Solvable Duplicate Names

Unsolvable Duplicate Names

69432 100%

2281 26.7%

395 4.62%

Course Evaluations
On rare occasions, the course evaluation data would disagree with the time schedule data. In these
cases, we went with the evaluation data, as it is more recent. More common was that evaluation data
was not present for a course. This happens because course evaluation is only available for one year,
whereas the schedule goes back many years.

Occurrences Percentage of relevant data

Disagrees with time schedule

Courses without evaluations

522 0.7%

62737 90.4%

Awards
Because the awards page goes very far back, there are many instructors listed that are not present in
other sources.

Number of awards

Awards matched to instructors

Awards not matched
(instuctor not present)

103

144

Names Crawler
This is the one crawler which does not interact with other areas of the database.

21

Table 2: Course Evaluation Summary

Table 3: Awards Summary

Table 1: Time Schedule Summary

Number of names

Total names discovered

Distinct names

4144

2818

Publications Crawler
We did not find publications for many instructors, but the distribution of publications found has a fairly
long tail, with some instructors having as many as 30 publications found. See figure 20 for a visual
representation of the distribution curve for publications. This figure does not contain the frequency of
instructors with zero publications found, as that would have made the remainder of the graph very small.
The number of instructors without publications is 7124, or 83.3% of instructors.

 Figure 20: Distribution of publications

Homepage Crawler
Unfortunately, our homepage crawler tended to produce a large number of false positives. These false
positives turned up as random noise, and increasing the classification threshold did not improve results.
To measure the precision and recall, we took a random sample of 50 instructors, and manually checked
the homepage listed, if present, or searched for a homepage if it was not listed. The precision and recall
calculated from this testing is listed in table 5 below.

0

125

250

375

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

22

Table 4: Names Summary

Number of Publications

N
um

b
er

 o
f I

ns
tr

uc
to

rs

Percentage

Precision

Recall

42.6%

87.0%

RateMyProfessors Crawler
Again, the main problem here was data duplication. Because the instructor names are from an external
source, we expected a larger amount of variation than from UW sources. As in the publications crawler,
most instructors did not have reviews. The distribution curve is also similar, slowing declining from one,
but with a long tail. See figure 21 for a graph of the distribution curve.

Occurrences Percentage of relevant data

Instructors with reviews

Entries matching existing instructors

1046 12.2%

8808 65.3%

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

23

Table 5: Homepage classifier statistics

Table 6: RateMyProfessors summary

N
um

b
er

 o
f I

ns
tr

uc
to

rs

Number of Reviews
Figure 21: Distribution of reviews

Salaries
Salary data is very structured, but again, matching names was an occasional problem. In addition, salary
data is not available for some people classified as instructors, such as many TAs.

Occurrences Percentage of relevant data

Instructors without salaries 1046 12.2%

Informal User Evaluations
We conducted a user evaluation with four questions in mind:

• Can people quickly find information about instructors and is the formatting of the information
clear?

• Can people understand and use our tools for comparison between entities on our site?

• Once users have found information about instructors, is the information useful?

• What information, or changes to the site could be made to make the site more useful?

Our study was done with a total of seven participants. Five were male and two were female, all were
undergraduate students at the University of Washington. Five of the participants used tools like
RateMyProfessor.com to help make decisions about what instructor would be best to take a course
from, one thought such reviews were unhelpful, sighting metrics like appearance as immature, and one
had never heard of any such tools. None of our participants knew that course evaluations and salary
information was available online. Most of our participants also mentioned friends and hearsay as
important factors in deciding whether to take a course with an instructor.

We performed our testing in one of the project rooms in the Paul Allen Center that provided an isolated,
distraction free environment. We did all seven tests separately, and each test lasted roughly 45 minutes.
First we had the participants sign our consent form, informed them that we were testing the interface
and not them, and described briefly that Instroogle.com was a site that provided information and
comparison tools for instructors at the University of Washington. Our tasks were chosen so as to help us
answer our four questions stated previously, as well as to allow for use of all of our application’s features.
For our first task we asked the participants to find information about a specific instructor. We chose a
different instructor each time, to eliminate any bias that could be created by asking for only one. Next we
asked the participants to choose which instructor they would prefer to take course x from, where x was
a different course each time. Lastly we asked them to find an exceptional instructor within their
department and find an interesting course that this instructor taught.

Results
We had each user run through the three tasks, but used a separate ordering each time, to avoid any
biases a certain ordering might produce. We gave minimal help to the users, only assisting when it was
clear they had misunderstood the task. After each user was done, we asked them for any general
comments or suggestions on the interface, and then thanked them for their time.

24

Table 7: Salaries summary

We were generally pleased with the results of the tests as were the participants with our site. The general
feeling among the participants was that the site was much quicker and more satisfying than searching
the UW time schedule and tools like RateMyProfessor.com. Most were also surprised and excited to see
salaries and evaluation data which they assumed was private data that the University did not release to
students.

Finding and Understanding Information
All of our participants were able to search and find information very quickly. However, there were a
couple of small usability issues that slowed them down. The first issue was discovered when a
participant tried to search for the Mechanical Engineering department by typing ME in the search bar.
The autocomplete returned no results and neither did the search results page. As it turns out the actual
abbreviation for the Mechanical Engineering department is “M E” (separated by a space) and the
autocomplete and search were not smart enough to eliminate the space in between the words. This
problem could be solved by making our search and autocomplete smarter, possibly just by adding this
case.

Four participants got stuck on a department profile page where they were looking for courses offered by
the department. Finding the list of courses was no problem but each course is listed with only its
department abbreviation and number, which forced participants to click back and forth looking up the
titles of each course on the course profile page. This issue could be easily solved by just adding the title
to the link for each course on the department profile page.

Along the same lines as the last issue two participants complained because there was no link between a
course and its department. The interface forced them to do a new search for the department rather than
click a link. This too is an easy fix but an important problem with the flow and navigation of the site.

On top of minor issues with finding information, participants also discovered some issues with the
format of some information that confused them. Five of our participants at one point asked us if the
scores we showed them were out of five, because there was no indication of the maximum score.
Another point of confusion was what the scores and salaries on the course page actually meant.
Interestingly this was not an issue on the department page, but people did not immediately understand
that we could also aggregate salaries and scores from all teachers that had taught a course. Both of
these issues seem minor and are easily fixed by adding a small amount of information in the right places.

Overall participants were able to quickly find information.

Using the Comparison Tools
The user study was arguably most helpful in pointing out short comings with our comparison tools. The
first issue participants found frustrating was not being able to compare all the instructors that taught a
course without adding each one individually. Upon understanding this problem we also realized that
being able to add all the courses offered by a department is a similar issue that should also be
addressed, although none of our participants pointed this out. Fixing this is more complicated than most
of the other issues because it isn’t clear the best action to take. One idea is to have a button on the
course profile page that reads “Compare All Instructors for Course X”. Another solution would be to
allow the course to expand once it is on the compare page with all of the instructors. Clearly more user
studies would be needed to make this process work smoothly.

Another issue that would take some time to solve is that there is no undo or trash can on the compare
page. While only one user in our study complained about the lack of this feature it seems useful and
important if people will be using the comparison page for more than a minute or two.

The last issue we found with our comparison tools was that users did not understand the feedback we
provided after they pressed the “add to compare list” button. Three participants thought that nothing
happened after clicking the button and that our site was broken. This problem is easier to solve, we plan

25

on making each button turn grey and disabled if the entity it adds to the compare list is already in the
compare list. This would give more visual feedback after pressing the button.

While there were issues with our comparison tools they were not related to the concepts behind using
such a system. All our participants were able to quickly understand how to use the tool and understand
more deeply the relationships between the entities they compared.

Usefulness of the Information
To understand how well our interface achieved this goal we couldn’t simply look at flaws in our interface
but rather how effectively and convincingly were people able to answer the questions we gave them.
While this is difficult to impossible to gauge aside from listening to the opinions of our participants, we
feel their explanations were very helpful. The general feeling we got from or participants was that the
best way to know how much they will like a teacher aside from having the teacher in a previous course is
hearing about the professor from friends and peers. This sounds a lot like the information we provide
from RateMyProffesor.com, but our participants brought up that we only provided numbers, and that
descriptions would be helpful as well. Along these same lines we came to understand that the
participants seemed to want a more social atmosphere to discuss instructors that allows users to
generate content.

Conclusions
While we are very pleased with the artifact we have created, we realize that Instroogle has much more
potential to be explored. We can already imagine another rich feature set that would fit perfectly on top
of Instroogle.

Goals
These were the original goals from our project proposal:

“Steam will build a website that lets students search and compare interesting information about
professors. This includes graphs of course evaluation histories, salary comparisons based on
departments, best reviewed professor for a given course, number of publications relative to salary, etc.”

Achievements
We overwhelmingly feel like we accomplished our initial goals and even exceeded some of them. Based
on the feedback we’ve received from our peers and friends, our artifact is impressive, useful, and fun.
Instroogle is definitely on the right track to becoming a fully-fledged instructor search engine, and we’re
really excited to see what the future brings us.

Future Work
Right now Instroogle does not support the ability to have department-specific leaderboards of courses
and instructors or course-specific leaderboards of instructors. We have the technology to implement
said features, but we chose to delay the implementation of these features until after we finished our
larger features. Once the quarter was coming to an end, we could not afford to budget time for these
features. We plan to implement them in the near future.

Instroogle does not graphically display any data or trends in its current build. We originally wanted to plot
data about instructors over time and use these visual aids to assist users in their interpretation of the
data. We want to add this capability in the time to come.

26

One area we originally wanted to explore but never budgeted time for was our own engine for user
feedback of courses and instructors. At the moment we rely on data from UW’s course evaluation
catalog and RateMyProfessors.com to rank and compare instructors, courses, and departments.
MetricMaker currently ranks and compares courses and departments based on aggregated data of
individual instructors who have taught in said courses and departments. While this approach is
acceptable at the moment, we believe students should be able to review courses more generally, such
as “favorite topic discussed in the course” or perhaps a discussion of whether or not the course is
typically graded on a curve. This type of feedback system does not exist anywhere else.

If we had our own feedback interface, we could structure it exactly the way we wanted it and explore
many more metrics not previously covered, such as “average number of hours spent per week working
for this class.” We would also have a “comments” field that would allow users to write detailed
comments directly on our site instead of through RMP.

Instroogle also has the potential to fit nicely into a larger suite of applications. For example, with our
structured data set of instructors, reviews, ratings, evaluations, and our ability to load UW’s time
schedule data, Instroogle would fit perfectly into a schedule planner. Students could use Instroogle’s
technology to plan their course schedule each year, always knowing the reputation of the instructors of
the courses they are considering taking.

Additionally, one day Instroogle could very well be abstracted to work with any university. There is so
much rich data on the web about instructors, courses, and reviews. Our relational database is relatively
school independent (besides course evaluations which are UW specific). Data from about any university
could be parsed and our service would operate successfully. We can imagine Instroogle being the
internet’s leading source for college students looking to learn more about the courses they are taking
and the instructors who teach them.

If We Could Go Back...
If we could start the crawlers from scratch, we would first develop a way to download the crawled
content that was no longer being updated. For example, the UW time schedule data from Spring 2006 to
Spring 2009 is unlikely to be updated anymore. Had we downloaded the content of these pages, we
would have seen a significant increase in speed of the time schedule crawler which currently requests
each page over the internet. Reading these files locally would be significantly faster and drastically
reduce the network activity of our application.

We also should have developed a system to keep everyone's data in sync throughout the development
phase. Most tables in our database have foreign-key restraints into the instructors table. Thus every time
we ran the time schedule crawler, we had to run all other crawlers again to use the new data we
gathered. Unfortunately we had to run the time schedule crawler dozens of times throughout the quarter
because new features were constantly asked to be extracted from the data.

A logger of the crawler's activity would have allowed us to reuse some of the crawled data from
RateMyProfessors.com and other sources that critically depended on the time schedule crawler's
updated data.

Instroogle in many ways is quite fragile. Because we rely on screen-scraping to parse data from UW’s
time schedule, RateMyProfessors reviews, and more, our crawlers would need constant tuning if these
services ever changed their HTML code (which eventually will happen). In the future we would like to
begin relationships with the services we are crawling to gain access to some sort of API or XML feed of
their data. If that were to happen, Instroogle would be able to adapt to site formatting changes and
ultimately have more secure, confirmed data.

27

http://RateMyProfessors.com/
http://RateMyProfessors.com/

Overall, this was a great experience and we all learned a lot from it. We are extremely proud of the
artifact we created and have already used it in our personal course planning. Instroogle development is
just beginning: we have a full bug and feature list that needs to be worked on.

Appendix

Roles

Patrick
Patrick wrote the time schedule crawler and the RMP reviews crawler for Instroogle. He also wrote the
entire Leaderboards engine and contributed to the development of the three types of profile pages
Instroogle has.

Matt
Matt wrote the salaries crawler and the course evaluations crawler. He also was the webmaster and set
up our SVN code repository, our web server and is ultimately responsible for Instroogle.com. Matt's
biggest and most impressive contribution is the styling you see when visiting Instroogle.com. Matt was
our lead designer and is the reason our site looks so impressive.

Daniel
Danny's main contribution to the project was the search engine. Written entirely from scratch, Danny
implemented both autocomplete search results and full search results when autocomplete did not
suffice. Danny also wrote the names crawler and the homepage crawler.

Tim
Tim wrote the homepage classifier used by Danny's homepage crawler, and also wrote the publications
crawler of Instroogle. Tim designed and implemented the comparison page which features sorting on
different metrics. Tim also owned the session logic which allowed users to have a "comparison cart"
throughout their visit to Instroogle.com.

Group
The entire group worked together to design the artifact from the beginning to the end. From the initial
database schema to the per-pixel design of our homepage, the group worked together to produce the
best product possible.

The group worked quite well together. It was invaluable that each member of the group had some
experience working in Ruby on Rails before beginning this project. Each student had also taken
Databases which was a big help too.

The biggest problem our group had throughout the quarter was finding times to meet to work. Every one
of us was extremely busy with our heavy course load and interviews for after graduation. There was a
three week stretch towards the end of the quarter where we each had 4 or 5 interviews per week!

28

Consent Form
The Instroogle application is being produced as part of the coursework for the University of
Washington Computer Science course "CSE 454: Advanced Internet and Web Services".
Participants in experimental evaluation of the application provide data that is used to evaluate and
modify the interface of Instroogle. Data will be collected by interview, observation, and
questionnaire.

Participation in this experiment is voluntary. Participants may withdraw themselves and their data at
any time without fear of consequences. Concerns about the experiment may be discussed with the
researchers (Patrick Healy, Matthew York, Daniel Swisher, or Tim Crossley) or with Professor Dan
Weld, the instructor of CSE 454:

Daniel Weld

Computer Science & Engineering

University of Washington

dan at danweld dot com

Participant anonymity will be provided by the separate storage of names from data. Data will only
be identified by participant number. No identifying information about the participants will be
available to anyone except the researchers and their supervisors.

I hereby acknowledge that I have been given an opportunity to ask questions about the nature of
the experiment and my participation in it. I give my consent to have data collected on my usage and
opinions in relation to the Instroogle experiment. I understand I may withdraw my permission at any
time.

Name __

Date ___

Signature__

Witness name __

Witness signature_____________________________________

29

RateMyProfessors.com Rating Categories
Easiness
• Some students may factor in the easiness or difficulty of the professor or course material when
selec8ng a class to take. Is this class an easy A? How much work do you need to do in order to get a
good grade?

Clarity
• A professor's organiza8on and 8me management skills can make a great difference on what you
get out of the class. How well does the professor teach the course material? Were you able to
understand the class topics based on the professor's teaching methods and style?

Helpfulness
• Helpfulness is defined as a professor's helpfulness and approachability. Is this professor
approachable, nice and easy to communicate with? How accessible is the professor and is he/she
available during office hours or aJer class for addi8onal help?

Rater Interest
• There is always that one class everyone recommends taking before gradua8ng. As a student, how
interested were you in the class, BEFORE taking it? Or how interested were you in taking this course
from this specific professor.

Outside Code
Dexagogo - a javascript sortable table using the prototype javascript library

Prototype - a javascript library that comes stocked with Ruby on Rails.

Scriptaculous - a javascript animation library built on top of Prototype. It also comes stock with Ruby on
Rails

Hpricot 0.6.164 – HTML parser. We needed this specific version to run our crawler due to some poorly
formatted html. This version works some magic.

Sanitize – HTML sanitizer. Removes tags from the html to get just the text.

will_paginate - A pagination plugin for Ruby on Rails.

ruby-imagespec - Reads metadata from image files

30

http://livepage.apple.com/
http://livepage.apple.com/
http://www.prototypejs.org/
http://www.prototypejs.org/
http://script.aculo.us/
http://script.aculo.us/
http://github.com/whymirror/hpricot
http://github.com/whymirror/hpricot
http://wonko.com/post/sanitize
http://wonko.com/post/sanitize
http://wiki.github.com/mislav/will_paginate
http://wiki.github.com/mislav/will_paginate
http://github.com/andersonbrandon/ruby-imagespec
http://github.com/andersonbrandon/ruby-imagespec

Sites Crawled
BehindTheName Crawler: http://www.behindthename.com

Time Schedule Crawler: http://www.washington.edu/students/timeschd/

Course Evaluation Crawler: http://www.washington.edu/cec/

RateMyProfessors Crawler: http://www.ratemyprofessors.com/SelectTeacher.jsp?sid=1530

Salaries Crawler: http://lbloom.net

Publications Crawler: http://citeseer.ist.psu.edu/

Homepage & Images Crawler: Google search API on washington.edu domain

Awards Crawler: http://www.washington.edu/uaa/teachingacademy/awards-past.html

Instructions
Browser Requirements: Instroogle works best in Safari, Firefox, or Chrome

If you would like to run it from scratch, you will need all of the projects listed in Outside Code and you
will need to run the crawlers. Instructions can be found by running “rake -T” from the root application
directory.

31

http://www.behindthename.com
http://www.behindthename.com
http://www.washington.edu/students/timeschd/
http://www.washington.edu/students/timeschd/
http://www.washington.edu/cec/
http://www.washington.edu/cec/
http://www.ratemyprofessors.com/SelectTeacher.jsp?sid=1530
http://www.ratemyprofessors.com/SelectTeacher.jsp?sid=1530
http://lbloom.net
http://lbloom.net
http://citeseer.ist.psu.edu
http://citeseer.ist.psu.edu
http://www.washington.edu/uaa/teachingacademy/awards-past.html
http://www.washington.edu/uaa/teachingacademy/awards-past.html

