
Project Members

Eric Kimbrel, Erik Turnquist, Zack Allred, Rob Hanlon

Goals for Project

When designing this project we wanted to create something that we would use and could
recommend to our friends. Most of us had used Twitter previously so we began to
brainstorm what additional features we would like added to to Twitter. Twitter is great at
finding interesting facts about all Twitter users, but it does not allow you to easily
discover interesting local trends from your followers. We developed a very ambitious list
of features which included:

• Visualization of Twitter relationships using the HTML 5 canvas tag
• Determining similarity between different Twitter users
• Given a list of users and their tweets determine trends in their conversations
• Recommend followers to a given user (those with high similarity)
• Identify groups of users that tweet about similar topics

We thought that providing an interesting UI was paramount in all of these features,
which is why a dynamic graph view was chosen as the main UI feature. It allowed us not
only to show similarity in an intuitive way but it also allowed the user to easily select
users for trend analysis. Although not all the features initially proposed were finished,
the essential core features were. These include the dynamic graph visualization,
determining similarity between users, and determining trends given a group of users and
their tweets. The remaining features would be built on top of these fundamental features
and could be implemented in the future.

System Design

The system were designed to be as decoupled as possible so experimentation could
more easily take place. There were two main parts to the system:

• The frontend written in Ruby and JavaScript
• The backend server written in Java

The frontend runs on JRuby on Rails. We made this design choice for several reasons:
• Ruby on Rails is a well-regarded framework that makes it very easy to build a

web app
• Java is more appropriate for doing fast calculations
• JRuby allows for a bridging of the two, and allows for instantiation of Java

objects directly from JRuby.

In addition to using JRuby on Rails, we made use of several Ruby libraries to make our
lives easier. First off, we used Resque (http://github.com/defunkt/resque), a Redis-
backed Ruby queueing system for backgrounding database and Twitter API jobs. These
jobs store JRuby-wrapped Java objects in a central Distributed Ruby object queue, and
operate upon them as needed. In order to facilitate OAuth authentication with Twitter,
we used the twitter-auth Rails plugin (http://github.com/mbleigh/twitter-auth), which
made adding OAuth to our frontend a five minute process.

The UI is built atop the canvas DOM element, a new element introduced by HTML5. The
graph is automatically laid out in a loosely force-directed manner, which prevents nodes
from overlapping and allows graph layout to be determined purely by the similarity score

between users. To allow for this, we combined Processing.js (http://processingjs.org), a
framework that provides many drawing primitives in order to easily draw upon a canvas,
as well as a port of the Traer Physics library (http://www.cs.princeton.edu/~traer/
physics/) that we wrote, to the end of node positioning. Lastly, we used the popular
jQuery JavaScript framework to add and remove text from arbitrary DOM elements.

The back end server is made up of three main parts. The first consists of updating the
data loaded from Twitter, the second determines possible trends, and the third finds
similarity between users.

To update a users data new friends and followers as well as their tweets must be loaded.
This part gathers data from the twitter API using twitter4j, a java interface to the Twitter
API. How it gathers data and processes it is outlined in the algorithm portion of the
report. This process is run continually in the background so that a users data will always
be up to date, and also when a user first logged in.

The trending engine had to major iterations. The first used word counts (computed after
the tweets were updated) as a simple way to determine popular words among a group of
users. Twitter distinguishes special words tags with a "hash tag" as topics so if found
those were automatically included in the trend. The second iteration used as a basis the
Yahoo Term Extractor API which when given text attempts to determine important
words.

To determine similarity, a user's tweets are treated as a document, and then the
documents of both users are compared. At first we simply did a euclidean distance on
the documents, however through experimentation we found that cosine similarity of the
tf-idf vectors because it took into account the document frequency of the terms.

Algorithms

Automatically Updating Twitter Data

The following is the basic methodology for obtaining new tweets and users from the
Twitter API and inserting them into the database. The following values are used as
constants in the algorithm and have been tuned for the optimal performance for the
network and load delay times:

Friend/Followers to pull on each process task: ff_process_num
Tweets to pull on each process task: tweets_process_num
Max friends/followers to keep for each user: ff_max_num
Max tweets to keep for a user: tweets_max_num

1. Get the list of every user that has logged into the app
2. Retrieve a set of

ff_process_num
friends/followers that have not been added to the database, making sure not to
exceed
ff_max_num stored in the database.

3. For each new friend/follower, get a list of the newest
tweets_process_num tweets

4. For each existing user get the newest tweets (making sure not to obtain tweets
that have already been added), up to
tweets_process_num.

5. If the total amount of tweets for a user exceeds
tweets_max_num, then delete the oldest tweets so there are only

tweets_max_num left.

Similarity

While two methods were implemented for similarity only one is used in the current code.

Tf-idf Cosine Similarity:

Similarity(twitterer_1, twitterer_2)
1. tf_1, tf_2 <- the word counts (sorted in ascending order) of twitterer_1 and

twitterer_2 respectively (from the database).
2. df <- the document frequency of every term (retreived by an sql query in

DBConnection.java)
3. D <- the number of twitterers in the database (retreived by an sql query in

DBConnection.java)
4. tf_idf_1, tf_idf_2 <- currently empty td-idf vectors.
5. For each term, t, in df:

idf <- log(D / df(t))
tf_idf_1(t) <- t in tf_1 ? tf_1(t) * idf : 0
tf_idf_2(t) <- t in tf_2 ? tf_2(t) * idf : 0

6. return (tf_idf_1 * tf_idf_2)/(|tf_idf_1| * |tf_idf_2|)

Trends

Two methods of trending were implemented. One based off Word Counts and another.

Solution 1: Word Count based approach to Local Trending:
With this method we pull trends directly from the words tweeted by users. In twitter
words marked with a '#' are used to indicate a topic, and so all words with a '#' are
considered for trends before considering any other words. The algorithm is as follows:

1. Convert a users tweets into rows in a Database: (user_id,word,count)
2. When n trends are requested for a set of users S:

SELECT word
FROM wordcounts
WHERE word like '#%' and id = 1 or id = 2 or
GROUP BY word
ORDER BY sum(count) desc
limit n;

If fewer than n trends are returned we then consider all words (not just those with a '#')
to fill in the required number of trends. To ensure more meaningful results words fewer
than 5 letters are not considered.

Solution 2: Topic Extraction based approach to Local Trending:
The Topic Extraction method converts a users tweets into a set of topics using Yahoos
term extraction API (http://developer.yahoo.com/search/content/V1/
termExtraction.html). The result is simply a list of topics for each user. The topics are
not weighted via frequency, they are simply extracted from the text.

The topics returned are then stored into rows the a Database: (user_id, topic)

When trends are requested for a set of users the topics shared by the greatest number
of users is returned. If topics are not shared between users then some topics will be

returned, but they may or may not be meaningful to the group.

Benefits and Disadvantages: a set of subjective measurements to show how well the
different methods work.

Word Count Term Extraction

Users have explicit
control of trends

Yes, users can mark
things with a # to say
its a trend

No. Users words are
converted, # tags are
ignored

Frequency of topics
matter

Yes, topics that get
talked about a lot are
reflected heavily

No. Shared topics are
reflected, but they
are not necessarily
the most talked about
topics.

Trends actually
reflect what people
are talking about

Not Really.. Most
users don't use the #
enough, and one
word does not really
capture a topic.

Yes. Returns rich
terms that really
show what people are
saying.

Small group trends

Works well since
word frequency still
reflects what is
talked about the
most.

Works poorly because
small groups may not
have overlap.

Large Group trends Works well. Works well.

Usage Scenario

A social media professional with an active presence on Twitter would like to know

how well he or she is connected with her or his followers. However, this person would

like to have this experience in a more visual way, that lets him or her actually see how

close the connections are. In this case, a pure listing of users organized by TF-IDF score

would not be as fulfilling, in terms of being able to conceptualize a relationship. A

network graph, of this person's followers and friends, would be the ideal visual

representation, but a raw, uninformed network graph would be useless. By weighting

according to similarity, this social media professional could have the ability to see with

which of the users they should focus their efforts on making strong connections. In

addition, by highlighting a group of users, especially closely related ones, this

professional could hone in on what conversations are being had in a quick manner, and

could easily go forth and do research on said topics to the end of being more closely

involved in a conversation. Our tool could thus be an integral part of a business, allowing

quick and informative glances at a business's social network.

Experiments

Experimental Data on Trending -

Phase 1: Consider all of a users tweets as a single document and translate the
document into word counts or a list of topics.

Experiment Description:

1. For each twitter user in the database, concatenate each of their tweets into one
document.
2. Note the length of the document.
3. Measure the time required to count the use of each word in the document
4. Measure the time required for Yahoo to return a list of terms from the document.

Processing word counts is fast and
efficient. Term extraction takes
significantly longer to complete as
document size increases. Some of this
increase is likely due to network latency
while using the Yahoo API.

Phase 2: Return trends for a group of users

Experiment Description:

1. Create 3 user groups for testing. One with a single user, one with 5 users, and
another with 250 users. These group sizes were selected to show the overhead of using
the mechanism, as well as the increased work load due to adding additional users to a
query.
2. For each user group ask for the trends 100 times and take the average
measurement.

3. Look at the rows in the database tables to determine the storage space required by
the different algorithms in order to return trends of each group size.

The Term Extraction version returns trends
significantly faster for both small and large
user groups.

The difference in time is due to the amount
of data that is stored in the database. The
number of topics stored for a group of
users stays small, while the world counts
grow quickly.

Difficulties/What We Learned

Trending Difficulties

Finding trends from natural language is much more difficult than we first expected. Most
intelligent solutions such as suffix tree clustering require an initial set of labeled data, or
a previously defined list of categories. Since we wanted to discover trends from such a
diverse set of documents (tweets) it wasn't clear how to use these well known
techniques. Instead we implemented a more naive solution based off of word frequency.

Twitter4j Difficulties

During development of the background automatic update functionality Twitter changed
the way they paginate results, which broke the twitter4j library. After much investigation
into the Twitter API and the twitter4j source code, it was found that instead of specifying
page number (which simply would increment) Twitter chose to reply with a random
number that would be used as an index into the next page. After changing the correct
source files and building the library, the changes fixed the pagination issues. As a result
we were able to unexpectedly contribute to an open source project.

UI Difficulties

The canvas tag and browser JavaScript engines are not ready for widespread use in
heavily animated graphs with a large amount of nodes. Initially, we were inspired by
demos of the canvas tag found created by 9elements and Bomomo (see appendix for
links), which showcase eye-pleasing animations done purely in HTML5. Upon further
inspection of the aforementioned sites, however, one can see that the 9elements demo
has either simply or hard-coded particle updates, and Bomomo actually has very few
moving parts. Attempting to draw a large force-directed graph of nodes using a physics
library using a single thread of execution within a browser window severely limited the
size of graph that could automatically be built and laid out. In order to the make the
graph actually usable and animated, one may have to bite the bullet and create the UI in
Flash or Java. If canvas is a must, the server could maintain and calculate graph state,
and the graph could remain in sync via AJAX calls. Another option would be heavy
optimization of the physics library, as well as reducing the number of moving parts on
the graph. This would require the most research and toying, most certainly.

Conclusions and Future Ideas

By providing a visualization tool on top of the twitter network, and allowing user
selection of trending groups, we have made twitter data more discoverable and usable.
Several Challenges arose and provided opportunities for future work.

Future Work

1. Scale - One Server and a relational database clearly is not capable of supporting a
large scale Internet service. To increase scalability we would distribute processing and
data across a cluster of machines using Hadoop. The UI faces scalability issue as well,
such as drawing graphs to show larger portions of the twitter network. This is a
computationally heavy process that requires significant work to come up with an elegant
solution.

2. Trends / Similarity - Basing these metrics off of word choices provided a good way
to start the project but significant improvements could be made. Machine learning
techniques that used labeled training data to intelligently select topics from user tweets
would lead to better trends discovery and an improved similarity rating.

3. Additional Features - We would like to add more features to the project that might
be of use for twitter users. For example clustering users based on their similarity,
searching for users who tweet about certain topics, recommending friends, etc.
Extensions of the network graph could make it possible to highlight clusters of users,
making it easier to find similarities in closely related groups, and highlight levels of
connection by depth. This would be an interesting problem; that is, making tree highlight
by depth an intuitive interface element could be difficult. Another future feature that
would be useful would be the ability to restructure the graph after hiding users, in order
to be more clearly see users that have not yet been discovered.

Appendices

Work Distribution

Erik - Designed a background service that automatically pulls new data from Twitter.
Eric - Worked and implemented various trending algorithms.
Zack - Worked and implemented a similarity engine.
Rob - Designed and implemented the UI.

Links

Bomomo: http://bomomo.com/
9elements Canvas Demo: http://9elements.com/io/projects/html5/canvas/

API/Libraries

twitter4j - A Java library for the Twitter API
Yahoo Term Extraction

Instructions for Code Usage

OS Requirements
• Linux/Unix based
• Mozilla Firefox
• Java
• Ruby 1.8.7 and JRuby 1.4.0

The README.txt is in the root directory of the project folder

	Project Members
	Goals for Project
	System Design
	Algorithms
	Automatically Updating Twitter Data
	Similarity
	Trends

	Usage Scenario A social media professional with an active presence on Twitter would like to know how well he or she is connected with her or his followers. However, this person would like to have this experience in a more visual way, that lets him or her actually see how close the connections are. In this case, a pure listing of users organized by TF-IDF score would not be as fulfilling, in terms of being able to conceptualize a relationship. A network graph, of this person's followers and friends, would be the ideal visual representation, but a raw, uninformed network graph would be useless. By weighting according to similarity, this social media professional could have the ability to see with which of the users they should focus their efforts on making strong connections. In addition, by highlighting a group of users, especially closely related ones, this professional could hone in on what conversations are being had in a quick manner, and could easily go forth and do research on said topics to the end of being more closely involved in a conversation. Our tool could thus be an integral part of a business, allowing quick and informative glances at a business's social network. Experiments
	Experiments
	Experiments
	Difficulties/What We Learned
	Trending Difficulties
	Twitter4j Difficulties

	Conclusions and Future Ideas
	Appendices
	Work Distribution
	Links
	API/Libraries
	Instructions for Code Usage

