
* The Whale

Visualizing Twitter with local groups
Erik Turnquist, Rob Hanlon, Eric Kimbrel, Zack Allred

Overview

All features we could possibly think of:
Visualization of Twitter relationships
Friend and follower similarity
Determine trends among a group of users
Follower recommendations
Identify groups of similar users

Core functionality achieved:
visualization
similarity
trends

Architecture

Gathering Data

Background service for automatically updating data
Lists of friends and followers
Newest tweets

Optimized for performance
Threadpools for API calls
Only receives new information from API

Uses minimal API calls
Twitter API Issues

Similarity

- First Attempt:
Euclidean distance of the tf vectors (as proportions).

Ignored words whose frequency were too large or small
Ignored words used by only one of the two Twitterers

Similarity = 1 - the Euclidean distance

Treat each user as a concatenation of their tweets.
We tried two different algorithms to rate the similarity
scores of the result.

- Second Attempt:
Cosine similarity of the tf-idf vectors

We chose to use the cosine similarity of the tf-idf vectors since
the first method did not take into account the document
frequency of the terms.

Finding Trends on Selected Users.

1. Word Usage: Base trends off the most common words that occur between all
selected users.

Group of 3 users:
 hcr, house, healthcare, politics, base64, facebook, red, twitter, glenn,
songoftheday

Group of 254:
db09, splatter, fb, hc09, sandvoxtip, unix@40, gomachine, dinner, unixtour, l4d

2. Term Extraction: Base trends on topics pulled from text using Yahoo's term
extractor

Group of 3:
iphone, google, bandstand, sounders, storytelling, curio, dingell, yesss,
bystander, skerik

Group of 254:
iphone, google, twitter, rt, tweets, tweet, tinyurl, ly, facebook, followers

Phase 1: Consider all of a users tweets
as a single document and translate the
document into word counts or a list of
topics.

Finding trends by word frequency vs. topic extraction.

Phase 2: When trends are requested query our database and return
the most frequent terms from the selected users.

Frontend structure
Non-GUI components:

JRuby on Rails
Why? Direct construction and
reference to Java objects from
Ruby code, so Rails can do what it
does best, and Java can do the
number crunching

twitter-auth RubyGem
2 minute Twitter OAuth integration

Resque
Used to asynchronously hit the
backend and check for updated
data

Distributed Ruby
Conveniently shuttles around
object references from Rails to
Resque in order to make sure
we're all working with the same
objects

GUI components:
<canvas>

HTML5
Open technology, new standard
Flash sucks, but canvas isn't really
ready for primetime. Learned that the
hard way

Processing.js
Ported from Java by John Resig (of
jQuery fame), a really intuitive
framework for building animations
and graphics on top of canvas

traer.physics.js
Also ported from Java, but by me. :)
Great for building force-directed
layouts

Some eye candy

