
Tastecliq
Problem: User taste preferences are scattered on the internet

movies on netflix.com
music on rhapsody.com
books on goodreads.com ...

Solution: A one-stop-shop for organizing your personal libraries
for different media types

Benefits:
1. People can track all taste preferences in one website

2. Website can make better recommendations since it knows
more about users

Demo

Recommendation Algorithm Choices

 SlopeOne for general user recommendations

Example:
If Sam gave the Beatles 5/5 and Aerosmith 4/5
Soheil gives the Beatles a 5/5
What do we think Soheil would give Aerosmith?
SlopeOne answers this!

Our algorithm considers all user ratings on all items to
predict the highest rated items for a single user

Recommendation Algorithm Choices
(cont.)
Pearson Correlation Coefficent for similar items

What if we just wanted items similar to another item?
Use an item based recommender!

Pearson coefficent to find a good matching of items.

Point of an item based recommender: Items are static in
their similarities(i.e. they don't change much) so we can
precompute values.

Other Algorithms Considered

Tanimoto Coefficient For Item Similarity:

Computes a simple yes or no (did they buy it or not?)
item similarity coefficent.
Data we had was based on ratings, so we could not use.

Dynamic Item Similarity Computations:

Keeps things up-to-date, very accurate.
Misses the point of an item based recommender. Not
static and very slow for computations.

So you want to make a Recommender?

What are you trying to do?
More profit by suggesting relevant items to users.
Expose more �relevant site content to users.

Recommendations do the searching �for the user.
Recommenders aren't limited to weird algorithms. Top 100 lists
are also recommendations.

What information do you have available?
Ratings, Page/Item View logs, buying history, static data
you bought, item metadata (song characteristics, movie
genres).

What if you don't have any good data available?

Case Study
YouTube's Related Videos

Goal: Give users related videos (or next video in series)
With What Data?: Collective users' viewing logs, text
relevance (similar clip titles), user ratings.
Other Ideas: Adjust recommendations based on what
people actually click. More clicks => move up in ratings, less
clicks => move down.

Testing and Adjustment

1. Implement a recommender that "should" work.
2. Does it meet our requirements? (Probably not.) Why not?
3. Make adjustments.

Recs too varied?
Restrict by genre, or improve data quality.

Recs too similar to original item?
Change algorithm/feature. Hybridize your
recommender.

Recs not actually relevant?
Change feature, or learn from failures based on user
click behavior.

4. Return to step 2 until you run out of time and money.

Things Learned:

Open source packages are messy sometimes.
Ex. Broken build of Taste Mahout package.

There is no "perfect" recommendation algorithm.

Different ones have different uses. It all depends on
what your goal is.

String matching is a problem. Can be a problem for
recommender, but beyond the scope of our project.

Simple example "The Matrix" vs. "Matrix, The". Can be
much more complicated.

Ruby on Rails is awesome! Fast development and
generally easy to learn.

