Skip to content

News & Events

GraphLab: Machine Learning for Big Data in the Cloud

Carlos Guestrin (Amazon Professor of Machine Learning, UW Computer Science & Engineering)

CSE Industry Affiliates 2012 Keynote Speaker

Wednesday, October 24, 2012, 1:05 PM

Atrium, Paul G. Allen Center for Computer Science & Engineering

Abstract

Carlos Guestrin

Today, machine learning (ML) methods play a central role in industry and science. The growth of the Web and improvements in sensor data collection technology have been rapidly increasing the magnitude and complexity of the ML tasks we must solve. This growth is driving the need for scalable, parallel ML algorithms that can handle "Big Data." Unfortunately, designing and implementing efficient parallel ML algorithms is challenging. Existing high-level parallel abstractions such as MapReduce and Pregel are insufficiently expressive to achieve the desired performance, while low-level tools such as MPI are difficult to use, leaving ML experts repeatedly solving the same design challenges.

In this talk, I will describe the GraphLab framework, which naturally expresses asynchronous, dynamic graph computations that are key for state-of-the-art ML algorithms. When these algorithms are expressed in our higher-level abstraction, GraphLab will effectively address many of the underlying parallelism challenges, including data distribution, optimized communication, and guaranteeing sequential consistency, a property that is surprisingly important for many ML algorithms. On a variety of large-scale tasks, GraphLab provides 20-100x performance improvements over Hadoop. In recent months, GraphLab has received thousands of downloads, and is being actively used by a number of startups, companies, research labs and universities.

Speaker Bio


Carlos Guestrin is a professor of Computer Science & Engineering at the University of Washington. He is also the co-founder of GGideaLab, a start up focused on monetizing social networks. Previously, he was a senior researcher at the Intel Research Lab in Berkeley. Carlos received his MSc and PhD in Computer Science from Stanford University in 2000 and 2003, respectively, and a Mechatronics Engineer degree from the Polytechnic School of the University of Sao Paulo, Brazil, in 1998. Carlos' work received awards at a number of conferences and a journal: KDD 2007 and 2010, IPSN 2005 and 2006, VLDB 2004, NIPS 2003 and 2007, UAI 2005, ICML 2005, AISTATS 2010, JAIR in 2007, and JWRPM in 2009. He is also a recipient of the ONR Young Investigator Award, NSF Career Award, Alfred P. Sloan Fellowship, IBM Faculty Fellowship, the Siebel Scholarship and the Stanford Centennial Teaching Assistant Award. Carlos was named one of the 2008 `Brilliant 10' by Popular Science Magazine, received the IJCAI Computers and Thought Award and the Presidential Early Career Award for Scientists and Engineers (PECASE). He is a former member of the Information Sciences and Technology (ISAT) advisory group for DARPA.

Archives