Skip to content

Artificial Intelligence

Allen School researchers are at the forefront of exciting developments in AI spanning machine learning, computer vision, natural language processing, robotics and more.

We cultivate a deeper understanding of the science and potential impact of rapidly evolving technologies, such as large language models and generative AI, while developing practical tools for their ethical and responsible application in a variety of domains — from biomedical research and disaster response, to autonomous vehicles and urban planning.


Groups & Labs

Vials of DNA samples being prepared for genetic sequencing

Mostafavi Lab

The Mostafavi Lab develops machine learning and statistical methods that combine evidence across multiple types of molecular/genomics data and disentangle spurious from meaningful correlations for new insights into mechanisms of health and disease.

Closeup of silicon chip technology

Bespoke Silicon Group

The Bespoke Silicon Group aims to bring hardware design to its highest art and rapidly conceive of, design and implement entirely new kinds of hardware faster than has ever been done before.


Faculty Members

Faculty


Centers & Initiatives

Change is a cross-campus collaboration that explores the challenges of developing technology in the context of positive social change. It seeks to make connections between researchers, outside organizations, and the public to inspire the development of new capabilities aligned with the interests of those most in need.

The Tech Policy Lab is a unique, interdisciplinary collaboration at the University of Washington that aims to enhance technology policy through research, education, and thought leadership. Founded in 2013 by faculty from the Paul G. Allen School of Computer Science & Engineering, Information School, and School of Law, the Lab aims to bridge the gap between technologists and policymakers and to help generate wiser, more inclusive tech policy.

Highlights


UW News

In a paper published in the journal Nature, a team of Allen School and Ai2 researchers unveiled OpenScholar, a system that can cite scientific papers as accurately as human experts and incorporate new research after it has been trained.

Allen School News

The Institute of Electrical and Electronics Engineers (IEEE) recognized Kemelmacher-Shlizerman for her “contributions to face, body, and clothing modeling from large image collections,” including pioneering virtual try-on tools and bringing the technology to the mainstream.

Allen School News

A team of Allen School and Ai2 researchers were recognized for developing an efficient, scalable system for indexing petabyte-level text corpora with minimal storage overhead to better understand the data on which large language models are trained.