Abstract: In most linguistic meaning representations that are used in NLP, prepositions fly under the radar. I will argue that they should instead be put front and center given their crucial status as linkers of meaning—whether for spatial and temporal relations, for predicate-driven roles, or in special constructions. To that end, we have sought to characterize and disambiguate semantic functions expressed by prepositions and possessives in English (Schneider et al., ACL 2018; https://github.com/nertnlp/streusle/), and similar markers in other languages (ongoing work on Korean, Hebrew, German, and Mandarin Chinese). This approach can be broadened to provide language-neutral, lexicon-free semantic relations in structured meaning representation parsing (Prange et al., CoNLL 2019; Shalev et al., DMR 2019).

Bio: Nathan Schneider is an annotation schemer and computational modeler for natural language. As Assistant Professor of Linguistics and Computer Science at Georgetown University, he looks for synergies between practical language technologies and the scientific study of language. He specializes in broad-coverage semantic analysis: designing linguistic meaning representations, annotating them in corpora, and automating them with statistical natural language processing techniques. A central focus in this research is the nexus between grammar and lexicon as manifested in multiword expressions and adpositions/case markers. He has inhabited UC Berkeley (BA in Computer Science and Linguistics), Carnegie Mellon University (Ph.D. in Language Technologies), and the University of Edinburgh (postdoc). Now a Hoya and leader of NERT, he continues to play with data and algorithms for linguistic meaning.

Speaker: 
Nathan Schneider
Time/Date: 
Wednesday, October 9, 2019 - 12:45
Location: 
CSE 305
Tags: